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Abstract 

In many standard text books on crystallography, the 
Gaussian expression for the Debye-Waller factor is 
derived from a classical point of view. The physical 
model normally used is too simple in that it is incom- 
patible with the concept of probability ellipsoids used 
to depict atomic thermal motion. A classical deriva- 
tion of the Debye-Waller factor expression is given 
that corrects some misconceptions. 

Introduction 

It is well known that the effect of thermal motion on 
the X-ray diffraction pattern of a crystal is described 
by the Debye-Waller factor. Thermal motion is incor- 
porated into the structure-factor equation by multi- 
plying the atomic scattering factor of the j th atom by 
exp ( -hrb jh) ,  where bj is the thermal motion tensor. 
This exponential function is Gaussian. It can be inter- 
preted as the characteristic function of the probability 
density distribution of the atomic position, which is 
therefore also Gaussian. It is now common practice 
to use this density distribution to depict the thermal 
motion by drawing a surface of constant probability 
(an ellipsoid) containing, say, 50% of the total proba- 
bility density (Johnson, 1965). 

A standard derivation of the Gaussian expression 
for the Debye-Waller factor in text books (James, 
1967, p. 22; Warren, 1969, p. 36; Woolfson, 1970, 
p. 190; Cowley, 1975, p. 246; Dunitz, 1979, p. 45) 
considers a single atom (or a single mode of vibration 
of the crystal) that behaves as a classical harmonic 
oscillator. The atomic position is averaged over space 
or time and a simple mathematical approximation 
then leads quickly to the correct result. This derivation 
is misleading and it gives an incomplete physical 
picture. Neither a time average nor a space average 
over identical but independent classical harmonic 
oscillators gives the Debye-Waller factor and it is 
only by the mathematical approximation that the 
correct result appears. Conversely, the Gaussian 
probability distribution of the atomic position cannot 
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be reconciled with a single classical harmonic oscil- 
lator. The latter gives a probability distribution that 
is far from being Gaussian. In addition, a 90% proba- 
bility ellipsoid normally has principal axes greater 
than covalent bond lengths. This cannot be explained 
in terms of this simple classical model since single 
atoms appear to have unreasonably large amplitudes 
of vibration. It is this inconsistency between identical 
harmonic oscillators and thermal ellipsoids that we 
wish to comment on in this note. We could find only 
one current crystallographic text book that uses an 
adequate physical model for the derivation of the 
Debye-Waller factor (Willis & Pryor, 1975, p. 92). 
This is in terms of lattice dynamics: we present here 
a simple derivation in terms of atomic vibrations. 

Text-book derivation 

We will consider first the standard text-book deriva- 
tion of the Debye-Waller factor referred to earlier. 
The thermal motion modifies each atomic position 
by a displacement u from the equilibrium position. 
For a one-dimensional structure, the structure-factor 
equation becomes 

N 
F ( h ) =  E fjexp[2~'ih(xj+uJa)]. (1) 

j= l  

This equation also applies in three dimensions if uj 
is taken as the displacement of the atom in the direc- 
tion of the scattering vector h. With h/a = 2 sin 0/A, 
(1) becomes 

N 
F ( h ) =  ~ £exp[4zri(sinO/A)uj] exp(2rrihxj) (2) 

j= l  

and the effect of thermal motion is contained in the 
first exponential. This factor must be averaged over 
all values of u~, since it varies with time within a unit 
cell and will be different from one unit cell to the 
next. If the j th atom in each cell is vibrating with the 
same energy, independent of other atoms, the time 
average is identical to the space average. For a simple 
harmonic oscillator, uj varies with time as Aj sin wit, 
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where Aj is the amplitude and % the angular 
frequency. The time average is therefore given by 

(exp [47ri(sin 0/A)uj]) 

- 2~" exp [4~ri(sin O/A)Aj sin q~] dq~ 

- - ' n -  

= Jo[4~'(sin 0/A)Aj], (3) 

where Jo is a Bessel function. This is not the Debye-  
Waller factor. 

This can be converted into the correct result using 
the approximation normally employed in text-book 
derivations. The power-series expansions of Jo(x) and 
exp ( -x2 /4 )  are the same to terms in x 2. We will also 
make use of the fact that, for a classical harmonic 
oscillator, A~= 2u--I, where ~ is the mean square 
displacement. For small arguments of the function 
we therefore obtain 

J0147r(sin 0/A)Aj]--- exp [-8~r2(sin 2 0/A)u2], 
(4) 

which is the Debye-Waller  factor. However, for the 
size of argument normally encountered (which can 
easily exceed unity), this approximation is not valid 
and there is no good scientific reason for using it 
anyway. In addition, the two functions give com- 
pletely different probability densities of the atomic 
displacement. 

Classical derivation 

To obtain the Debye-Waller  factor correctly, a more 
complete physical model must be used. The time 
taken to record the diffraction pattern will be long 
compared with the period of vibration of the atoms, 
so we may regard the X-rays as seeing each atom 
displaced by an amount u, where l ul is the expected 
absolute displacement given by the time average. We 
also expect the oscillators to have a Boltzmann distri- 
bution of energy. That is, for a crystal where the 
vibrational energy is independent of which unit cell 
the atom is in, the number of atoms per unit volume 
with a momentum in the interval dpx, dpy, dpz in the 
x, y, z directions is 

dN oc exp(-E/kT)  dpxdpydpz, (5) 

where E is the energy, k is Boltzmann's constant and 
T the absolute temperature. We will take the com- 
ponent of momentum in the direction of the displace- 
ment u, which is parallel to the scattering vector h. 
Since the energy of a classical oscillator is propor- 
tional to the square of the momentum and also to the 
square of the expected displacement, we can use (5) 
to give the probability density of atomic displacement 
as 

P(u) oc exp (-au2), (6) 

where c~ is the constant of proportionality between 
u 2 and E/kT. This is a Gaussian function that can 
be normalized to give 

P(u) = (2¢ru2) -1/2 exp (-u2/2u2), (7) 

where u 2 is the average of u 2 for each atom over the 
whole range of energies. 

We can now obtain the average of (2) over all uj. 
The space average of the exponential factor is 
therefore 

(exp [4wi(sin 0/A)uj]) 

= (2wu--~) - ' /2 S exp[4zri(sin 0/A)u~] 

(-uj/2uj) duj x exp 2 2 

-- exp [-87r2(sin 2 0/A 2) u2], (8) 

which is the Debye-Waller  factor. 
Thus it is the space average over a large number 

of oscillators with a Boltzmann distribution of energy 
that yields the Debye-Waller  factor and not the time 
average over a single oscillator. 

It will be seen that the nature of the time average 
has no effect on the final result. Since atoms in differ- 
ent unit cells are indistinguishable in the diffraction 
experiment, any statistical distribution of atomic dis- 
placement corresponding to the Boltzmann law will 
be indistinguishable from the time-averaged distribu- 
tion considered here, assuming the number of atoms 
is infinite. This assumption is already inherent in the 
Boltzmann law itself. The Debye-Waller  factor is 
therefore independent of the way the atoms move as 
a function of time. This is a restatement of the central 
limit theorem in probability theory. 

We hope this corrects misconceptions due to 
inadequate derivations in a number of current text 
books. 
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